A glimpse into the genetic basis of symbiosis between Hydrogenophaga and their helper strains in the biodegradation of 4-aminobenzenesulfonate

نویسندگان

  • Kangsan Kim
  • Han Ming Gan
چکیده

We report the whole genome sequences of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2, the first reported bacterial co-culture capable of degrading 4-aminobenzenesulfonate (4-ABS), a recalcitrant industrial waste product. To gain insights into the genetic basis for the syntrophic interaction between this symbiotic pair and also another recently reported Hydrogenophaga associated co-culture, Hydrogenophaga sp. PBC and Ralstonia sp. PBA, we performed detailed genetic analysis of these four strains focusing on the metabolic pathways associated with biotin, para-aminobenzoic acid (pABA), and protocatechuate metabolism. Both assembled Hydrogenophaga draft genomes are missing a majority of the genetic components associated in the biosynthetic pathway of pABA and biotin. Interestingly, a fused pABA synthase was found in R. sp PBA but not in A. radiobacter S2. Furthermore, using whole genome data, the taxonomic classification of R. sp. PBA and A. radiobacter S2 (both previously inferred from 16S rRNA gene) was re-investigated, providing new evidence to propose for their re-classification at the genus and species level, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanopore Long-Read Guided Complete Genome Assembly of Hydrogenophaga intermedia, and Genomic Insights into 4-Aminobenzenesulfonate, p-Aminobenzoic Acid and Hydrogen Metabolism in the Genus Hydrogenophaga

We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two di...

متن کامل

Genome sequence of Hydrogenophaga sp. strain PBC, a 4-aminobenzenesulfonate-degrading bacterium.

Hydrogenophaga sp. strain PBC is an effective degrader of 4-aminobenzenesulfonate isolated from textile wastewater. Here we present the assembly and annotation of its genome, which may provide further insights into its metabolic potential. This is the first announcement of the draft genome sequence of a strain from the genus Hydrogenophaga.

متن کامل

Isolation of aroclor1254 degrading bacteria in contaminated soil by transformer oil

ABSTRACT- Aerobic biodegradation is an environmental-friendly biological method that allows micro organisms to remove persistent organic pollutants. Aroclor1254 is a mixed compound containing polychlorinated biphenyls (PCBs) along with persistent organic materials. There is no estimate of Aroclor1254 usage and its release into the environment in Iran. A transformer manufacturing plant in Shiraz...

متن کامل

Organophosphate compounds and their biodegradation; using enzymes as an increased efficiency approach

Organophosphorus compounds are widely used in pesticides, insecticides in agriculture and as nervous chemical agents. These chemicals inhibit the acetylcholinesterase enzyme activity that is responsible for the nervous impulse in organisms. This effect leads to an increase in acetylcholine level and finally neuronal complications. Many methods are used to degrade and decontaminate these compou...

متن کامل

Decolorization of mixture of dyes: A critical review

Water plays a vital and essential role in our ecosystem. This natural resource is becoming scarce, making its availability a major social and economic concern. Use of a large variety of synthetic dyes in textile industries has raised an hazardous environmental alert. About 17 - 20% of freshwater pollution is caused by textile effluents. These effluents are recalcitrant to biodegradation and cau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017